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The Debye-Hückel theory describes rigorously the thermal equilibrium of classical
Coulomb fluids in the high-temperature β → 0 regime (β denotes the inverse tem-
perature). It is generally believed that the Debye-Hückel theory and the systematic
high-temperature expansion provide an adequate description also in the region of small
strictly positive values of β > 0. This hypothesis is tested in the present paper on a two-
dimensional Coulomb gas of pointlike +/− unit charges interacting via a logarithmic
potential which is equivalent to an integrable sine-Gordon field model. In particular, we
apply a form factor method to obtain the exact asymptotic large-distance behavior of par-
ticle correlation functions, considered in the charge and number density combinations.
We first determine the general forms of the leading and subleading asymptotic terms
at strictly positive β > 0 and then evaluate their high-temperature β → 0 forms. In the
case of the charge correlation function, the leading asymptotic term at a strictly positive
β > 0 is also the leading one in the high-temperature β → 0 regime. On the contrary,
the β → 0 behavior of the number density correlation function is accompanied by an
interference between the first two asymptotic terms. Consequently, the large-distance
behavior of this function exhibits a discontinuity when going from strictly positive
values of β > 0 to the Debye-Hückel limit β → 0. This is the crucial conclusion of the
paper: the large-distance asymptotics and the high-temperature limit do not commute
for the density correlation function of the two-dimensional Coulomb gas.
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1. INTRODUCTION

The object of study of the present paper is the equilibrium statistical mechanics
of infinite (bulk) classical (i.e., non-quantum) Coulomb fluids. For the sake of
simplicity, we shall restrict ourselves to the case of a symmetric Coulomb gas, i.e.,
a neutral system of two species of particles { j} of opposite unit charges {q j = ±1},
living in a ν-dimensional space of points r ∈ Rν . The system is immersed in a
homogeneous medium of dielectric constant ε = 1. The interaction energy of a
set of particles {q j , r j } is given by

E({q j , r j }) =
∑

j<k

q j qkv(|r j − rk |), (1.1)

where the Coulomb potential v is the solution of the Poisson equation

�v(r) = −sνδ(r) (1.2)

with sν being the surface area of the ν-dimensional unit sphere. In particular,

v(r) =
{− ln(|r|/r0) ν = 2,

1/|r| ν = 3.
(1.3)

The free length scale r0, which fixes the zero point of the 2D Coulomb potential,
will be set to unity for simplicity. The Fourier transform of the Coulomb potential
given by the ν-dimensional Poisson equation (1.2) exhibits the form 1/|k|2 with the
characteristic singularity at k → 0. This maintains many generic properties, like
screening and the related sum rules, (1) of “real” three-dimensional (3D) Coulomb
fluids. For the case of pointlike particles, the singularity of v(r) at the origin r = 0
prevents the thermodynamic stability against the collapse of positive-negative
pairs of charges; in 2D for small enough temperatures, in 3D for any temperature.
In such case the Coulomb potential must be regularized at short distance, e.g., by
a hard-core potential around each particle.

A complete analysis of the bulk Coulomb gas can be done within the frame-
work of the mean-field theory of Debye and Hückel (DH), (2) sometimes called the
linear Poisson-Boltzmann (PB) theory. The Debye-Hückel theory describes rigor-
ously the distribution functions of the internal Coulomb-gas charges in the high-
temperature regime β → 0 (β is the dimensionless inverse temperature). (3) The
nonlinear (“classical” in field theory) PB theory, which arises as the zeroth-order
term in a loop expansion of the grand partition function, (4) describes rigorously
the density profiles of the Coulomb-gas charges induced by an external charge
distribution, in a specific scaling regime of the infinite-temperature limit. (5) The
relation between the linear and nonlinear PB theories is described in field theoret-
ical books; see, e.g., Ref. 6 There exist many phenomenological approximations
for finite temperatures based on heuristic extensions of the mean-field theories. (7)
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In the rigorous mathematical sense, the high-temperature β → 0 regime is not
equivalent to the case of the inverse temperature β being a sufficiently small, but
strictly positive number, say β = 10−15. On the other hand, it is generally believed
that the β → 0 Debye-Hückel theory and its improvement by a systematic β

expansion adequately describe also the region of small positive values of β > 0.
This, at first sight natural, assumption might not be true for specific statistical
quantities of Coulomb fluids and therefore its validity has to be verified on exact
results at strictly positive β.

To solve exactly a 3D Coulomb fluid at strictly positive β is a hopeless
task. The situation is more optimistic in the case of 2D logarithmic Coulomb
fluids. The stability of the 2D Coulomb gas of pointlike ±1 charges against the
collapse, associated with the 2D spatial integrability of the Boltzmann factor
of the positive-negative pair of charges exp[βv(r)] = |r|−β at short distances, is
restricted to inverse temperatures β < 2. In this stability region the bulk ther-
modynamic properties (free energy, internal energy, specific heat, etc.) of the
2D Coulomb gas have been obtained exactly based on its equivalence with the
(1+1)-dimensional sine-Gordon theory. (8) Later on, the form-factor method was
applied to calculate the large-distance asymptotic behavior of the charge(9) and
number density (10) pair correlation functions. Within the half space geometry, the
surface thermodynamics (surface tension) of the stable 2D Coulomb gas in contact
with a grounded ideal conductor wall was obtained through its mapping onto the
boundary sine-Gordon model with an integrable Dirichlet boundary condition. (11)

The exact nonperturbative asymptotic forms of the charge and number density
profiles of the Coulomb-gas species at large distances from the conductor wall
were calculated in Ref. 12. It was shown that the DH theory adequately describes
the charge profile at a small strictly positive β, but this is no longer true for the
number density profile. This surprising result was the primary motivation for the
present work.

In this paper, we reconsider the bulk 2D Coulomb gas and perform a more
detailed form-factor analysis of the asymptotic large-distance behavior of the
charge and number density pair correlation functions. In Refs. 9,10, we have been
concerned only with the exact leading large-distance asymptotics of the correlation
functions. This information is not sufficient in view of present aims for which we
need also terms which are subleading in the large-distance limit. We first review
briefly technicalities and findings of the previous works and then develop the form-
factor formalism on higher levels in order to obtain the explicit forms of these
subleading terms. The program is nontrivial and requires the application of some
specific techniques known in the theory of integrable field models, e.g., a bootstrap
procedure when calculating the form-factors of higher (heavier) breathers in the
particle spectrum of the sine-Gordon theory. From the technical point of view, the
present paper goes far beyond the previous ones. (9,10)
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For both the charge and number density correlation functions, we first de-
termine the general forms of the leading and subleading asymptotic terms at
strictly positive β > 0 and then evaluate their β → 0 forms. In the case of the
charge correlation function, the leading term at positive β > 0 is also the leading
one in the β → 0 regime. On the contrary, the β → 0 behavior of the num-
ber density correlation function is accompanied by an interference between the
first two asymptotic terms. The large-distance behavior of this function there-
fore exhibits a discontinuity when going from strictly positive values of β > 0
to the Debye-Hückel limit. Equivalently, the large-distance asymptotics of this
function at fixed temperature β > 0 does not coincide with that obtained when
the high-temperature β-expansion has been performed first. This is the crucial
conclusion of the paper: the large-distance asymptotics and the high-temperature
limit do not commute for the density correlation function of the 2D Coulomb
gas.

The paper is organized as follows. In Sec. 2, we introduce the notation and
briefly summarize previous results obtained from the mapping of the infinite 2D
Coulomb gas onto the bulk (1+1)-dimensional sine-Gordon theory. The detailed
form-factor analysis of the asymptotic large-distance behavior of the charge and
number density correlation functions at a small positive β > 0 is presented in
Sec. 3. The high-temperature β → 0 behavior of the obtained results is discussed
in Sec. 4. A comparison is made with the systematic high-temperature expansion,
summarized in the Appendix. A recapitulation and some concluding remarks are
given in Sec. 5.

2. SINE-GORDON REPRESENTATION

The bulk 2D Coulomb gas of pointlike ±1 charges is treated in the grand
canonical ensemble characterized by the inverse temperature β and by the couple
of particle fugacities z+ = z− = z (at some places, in order to distinguish between
the + and − charges, we shall keep the notation z±). The grand partition function
is defined by

� =
∞∑

N+,N−=0

zN+
+

N+!

zN−
−

N−!
Q(N+, N−), (2.1)

where

Q(N+, N−) =
∫

R2

N∏

j=1

d2r j exp[−βE({q j , r j })] (2.2)

is the configuration integral of N+ positive and N− negative charges, N =
N+ + N− and the interaction energy E is defined by (1.1) with v being the
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logarithmic Coulomb potential. The infinite system is homogeneous and transla-
tionally invariant. Denoting the thermal average as 〈· · ·〉β , the number density of
particles of one charge sign q(= ±1) is defined by

nq =
〈

∑

j

δq,q j δ(r − r j )

〉

β

. (2.3)

Due to the charge symmetry, n+ = n− = n/2 where n is the total number density
of particles. At the two-particle level, one introduces the two-body density

nqq ′ (|r − r′|) =
〈

∑

j �=k

δq,q j δ(r − r j )δq ′,qk δ(r′ − rk)

〉

β

, (2.4)

which possesses the obvious symmetry n++ = n−− and n+− = n−+. We consider
also the pair correlation function

hqq ′ (|r − r′|) = nqq ′ (|r − r′|)
nqnq ′

− 1, (2.5)

in the charge (subscript ρ) and number density (subscript n) combinations:

hρ = 1

4

∑

q,q ′=±1

qq ′hqq ′ , hn = 1

4

∑

q,q ′=±1

hqq ′ . (2.6)

The 2D Coulomb gas is mappable onto the sine-Gordon theory. (13) Using the
fact that according to Eq. (1.2) −�/(2π ) is the inverse operator of the Coulomb
potential v and renormalizing the particle fugacity z by the (divergent) self-energy
term exp[βv(0)/2], the grand partition function can be turned via the Hubbard-
Stratonovich transformation into

�(z) =
∫
Dφ exp[−S(z)]∫
Dφ exp[−S(0)]

, (2.7)

where

S(z) =
∫

R2

d2r

[
1

16π
(∇φ)2 − 2z cos(bφ)

]
, b2 = β

4
(2.8)

is the 2D Euclidean action of the (1+1)-dimensional sine-Gordon theory. Here,
φ(r) is a real scalar field and

∫
Dφ denotes the functional integration over this

field. The one- and two-body densities of the Coulomb gas are expressible as
averages over the sine-Gordon action (2.8) as follows

nq = zq〈eiqbφ〉, (2.9)

nqq ′ (|r − r′|) = zq zq ′
〈
eiqbφ(r)eiq ′bφ(r′)〉. (2.10)
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The renormalized fugacity parameter z gets a precise meaning under the short-
distance conformal normalization

〈
eibφ(r)e−ibφ(r′)

〉
∼ |r − r′|−4b2

as |r − r′| → 0; (2.11)

for an explanation, see e.g. Ref. 14
The (1 + 1)-dimensional sine-Gordon model is an integrable field theory(15).

Its particle spectrum is the following. The basic particles are the soliton S and
the antisoliton S̄ which form a particle-antiparticle pair of equal masses M ; for
topological reason, the soliton and the antisoliton coexist in pairs. The S−S̄ pair
can create bound states, the so-called “breathers” {B j ; j = 1, 2, . . . < p−1}. Their
number depends on the inverse of the temperature parameter

p = b2

1 − b2

(
= β

4 − β

)
. (2.12)

The mass of the B j breather is given by

m j = 2M sin
(πp

2
j
)

, (2.13)

and this breather disappears from the particle spectrum just when m j = 2M , i.e.
at the point p = 1/j . Note that the breathers exist only in the stability region of
the corresponding Coulomb gas: the lightest B1 breather disappears just at the
collapse border p = 1 (β = 2), the B2 breather at p = 1/2 (β = 4/3), the B3

breather at p = 1/3 (β = 1), etc.
The explicit results for the ground-state characteristics of the (1 + 1)-

dimensional sine-Gordon model in the stability region were derived quite recently
due to a progress in the method of Thermodynamic Bethe Ansatz. The (dimen-
sionless) specific grand potential ω, defined in the infinite-volume limit as

−ω = 1

|R2| ln �, (2.14)

was found by Destri and de Vega(16) in the form

−ω = m2
1

8 sin(πp)
. (2.15)

Here, m1 is the mass of the lightest B1 breather [see formula (2.13) taken with
j = 1]. Under the conformal normalization (2.11), the relationship between the
soliton mass M and the fugacity z was established in Ref. 17:

z = �(b2)

π�(1 − b2)

[
M

√
π�[(1 + p)/2]

2�(p/2)

]2−2b2

, (2.16)
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where � stands for the Gamma function. The total number density n of the
Coulomb-gas charges is given by the standard relation

n = z
∂(−ω)

∂z
. (2.17)

Equations (2.15) and (2.16) thus imply the explicit density-fugacity relationship,
and consequently the complete bulk thermodynamics, of the 2D Coulomb gas in
the whole stability region β < 2. (8)

Using the thermodynamic formulae (2.14)–(2.17), the mass of the B j breather
(2.13) can be expressed as follows

m j = κ
[πp

2
tan

(πp

2

)]−1/2
sin

(πp

2
j
)

, (2.18)

where κ = √
2πβn is the 2D inverse Debye length. The high-temperature p → 0

form of m j reads

lim
p→0

m j = jκ ( j = 1, 2, . . .). (2.19)

3. FORM-FACTOR ANALYSIS

In a 2D integrable field theory with spectrum of particles {ε} of masses {mε},
the two-point correlation function of local operators Oa (a is a free parameter)
can be written as an infinite convergent series over multiparticle intermediate
states (18):

〈Oa(r)Oa′ (r′)〉 =
∞∑

N=0

1

N !

∑

ε1,...,εN

∫ ∞

−∞

dθ1 · · · dθN

(2π )N
Fa(θ1, . . . , θN )ε1···εN

×εN ···ε1 Fa′(θN , . . . , θ1) exp

(
− |r − r′|

N∑

j=1

mε j cosh θ j

)
.

(3.1)

Here, the first N = 0 term of the series corresponds to the decoupling 〈Oa〉〈Oa′ 〉.
The next N ≥ 1 terms contain the form factors

Fa(θ1, . . . , θN )ε1···εN = 〈0|Oa(0)|Zε1 (θ1), . . . , ZεN (θN )〉, (3.2)

εN ···ε1 Fa′(θN , . . . , θ1) = 〈ZεN (θN ), . . . , Zε1 (θ1)|Oa′(0)|0〉, (3.3)

which are the matrix elements of the local operator at the origin 0, between
an N -particle superposition of free one-particle states, denoted as |Zε(θ )〉, and
the vacuum |0〉. The form factors, which depend on particle rapidities {θ j } only
through their differences θ jk = θ j − θk , can be obtained explicitly in an axiomatic
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way. (18) The form-factor representation of two-point correlation functions (3.1)
is particularly useful for large distances |r − r′| since it provides a systematic
large-distance expansion. In the limit |r − r′| → ∞, the dominant contribution to
the truncated correlation function 〈Oa(r)Oa′ (r′)〉T = 〈Oa(r)Oa′(r′)〉 − 〈Oa〉〈Oa′ 〉
comes in (3.1) from a multi-particle intermediate state with the minimum value
of the total particle mass

∑N
j=1 mε j , at the point of vanishing rapidities {θ j → 0}.

The corresponding exponential decay exp(−|r − r′| ∑N
j=1 mε j ) is modified by a

slower (inverse power law) decaying function which particular form depends on
the form factors. The subleading large-distance contribution to 〈Oa(r)Oa′(r′)〉T

is determined by a multiparticle state with the first “excited” value of the total
particle mass

∑N
j=1 mε j , and so on.

In view of the sine-Gordon representations (2.9) and (2.10), the pair correla-
tion function (2.5) is expressible as

hqq ′ (|r − r′|) =
〈
eiqbφ(r)eiq ′bφ(r′)

〉
T

〈eiqbφ〉〈eiq ′bφ〉 . (3.4)

This means that the local operator of interest is Oa(r) = exp[iaφ(r)] with a = qb
(q = ±1).

The multiparticle intermediate states of the 2D sine-Gordon model can be
created from an arbitrary number of soliton-antisoliton S − S̄ pairs and breathers
{B j ; j = 1, 2, . . . < p−1}. From the point of view of the expansion (3.1), the most
relevant states are those with smaller values of the total particle mass. The general
analysis of the total masses of multiparticle states for an arbitrary value of the
temperature parameter p < 1 is complicated. In this paper, we are interested in
the high-temperature region of relatively small values of the parameter p. In this
region, the breathers have their masses (2.13) much smaller than 2M and therefore
constitute the building elements of the most relevant multiparticle states. In other
words, the soliton-antisoliton pair of the mass 2M can be “excluded” from the
construction of the relevant multiparticle states, it only restricts the validity of the
obtained results to specific regions of sufficiently small values of p.

In the high-temperature regime p → 0, the breather masses become inte-
ger multiples of the inverse Debye length, see formula (2.19). Consequently, a
coalescence of the total masses of different multi-breather states can appear in
that regime. In order to formalize this important phenomenon, the multi-breather
states are grouped into subsets {Sj }∞j=1 such that a given subset Sj contains all
states possessing in the regime p → 0 the same total particle mass equal to jκ .
We present first few of these subsets.

• The first subset S1 consists of only the one-particle B1 state with the
lightest mass m1. The inequality m1 < 2M holds in the whole stability
interval p < 1 (β < 2).



A Trickiness of the High-Temperature Limit 577

• The second subset S2 consists of the one-particle B2 state of the mass m2

and the two-particle B1 B1 state of the mass 2m1. The inequalities m2 ≤
2m1 < 2M hold in the interval p < 1/3 (β < 1). The equality m2 = 2m1

takes place in the limit p → 0.
• The third subset S3 consists of the one-particle B3 state of the mass m3, the

two-particle B1 B2 state of the mass m1 + m2 and the three-particle B1 B1 B1

state of the mass 3m1. The inequalities m3 ≤ m1 + m2 ≤ 3m1 < 2M hold
for p < (2/π ) arcsin(1/3) ∼ 0.216. The equalities m3 = m1 + m2 = 3m1

take place in the limit p → 0.

From the point of view of the next analysis, only the first two subsets are relevant.
They contain the one-particle B1 state, the one-particle B2 state and the two-
particle B1 B1 state. The explicit form factors for these states are summarized in
the next two paragraphs.

For the B1 breather, the multi-breather form factors Fa(θ1, . . . , θN )1...1 and
1...1 Fa′(θN , . . . , θ1) = Fa′(θN , . . . , θ1)1...1 are presented for the exponential operator
Oa(r) = exp[iaφ(r)] in Ref. 19. Within the notation (3.2), in the special case of
interest a = qb (q = ±1) they read

〈0|eiqbφ |B1(θ )〉 = −iq(πλ)1/2〈eiqbφ〉, (3.5)

〈0|eiqbφ |B1(θ2), B1(θ1)〉 = −(πλ)R(θ1 − θ2)〈eiqbφ〉, (3.6)

etc. Here, the parameter λ is defined by

λ = 4

π
sin (pπ ) cos

( pπ

2

)
exp

(
−

∫ pπ

0

dt

π

t

sin t

)
(3.7)

and the function R(θ ) is given on the interval −2π + pπ < Im(θ ) < −pπ by

R(θ ) = N exp

{
8
∫ ∞

0

dt

t

sinh (t) sinh (pt) sinh [(1 + p)t]

sinh2(2t)

× sinh2

[
t

(
1 − iθ

π

)] }
, (3.8)

N = exp

{
4
∫ ∞

0

dt

t

sinh (t) sinh (pt) sinh ((1 + p)t)

sinh2(2t)

}
. (3.9)

The function R(θ ) satisfies two useful relations:

R(θ )R(θ ± iπ ) = sinh (θ )

sinh (θ ) ∓ i sin (pπ )
(3.10)

and

R(−θ ) = S11(θ )R(θ ), (3.11)
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where

S11(θ ) = sinh (θ ) + i sin (pπ )

sinh (θ ) − i sin (pπ )
(3.12)

is the B1 B1 scattering matrix. (15) These relations enable one to extend the definition
(3.8)–(3.9) of R(θ ) to arbitrary values of Im(θ ). For the case of special interest
Im(θ ) = 0, one gets the representation

R(θ ) = sinh (θ )

sinh (θ ) + i sin (pπ )

× exp

{
− 4

∫ ∞

0

dt

t

sinh (t) sinh (pt) sinh [(1 + p)t]

sinh2(2t)
cos

(
2θ t

π

) }

(3.13)

valid in the whole stability region 0 ≤ p < 1.
The B2 breather is a boundstate of the two B1 breathers since the B1 B1

scattering matrix (3.12) has the B2 pole at θ = ipπ . Consequently, the one-particle
B2 form factor can be calculated from the two-particle B1 B1 form factor (3.6) using
a bootstrap procedure (18,20):

�〈0|eiqbφ |B2(θ )〉 = i resε=0{−(πλ)R(−ipπ + ε)〈eiqbφ〉}, (3.14)

where the parameter � is related to the residue of the B2 pole in the B1 B1 scattering
as follows

� = [−i resθ=ipπ S11(θ )]1/2 =
√

2 tan(pπ ). (3.15)

Using the relation (3.10) for θ = −ipπ + ε (ε → 0), one finds that

〈0|eiqbφ |B2(θ )〉 = −(πλ)

[
tan(pπ )

2

]1/2 1

R[−iπ (1 + p)]
〈eiqbφ〉. (3.16)

Using the explicit form factors (3.5), (3.6) and (3.16) in the series represen-
tation (3.1) for the pair correlation function (3.4), one finally arrives at

hqq ′ (r ) = −qq ′λK0(m1r ) + πλ2 tan(pπ )

2

1

R2[−iπ (1 + p)]
K0(m2r )

+λ2

2!
I (m1r ) + o(e−m3r ), (3.17)

where

K0(x) =
∫ ∞

−∞

dθ

2
e−x cosh θ (3.18)
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is the modified Bessel function of second kind(21) and I (m1r ) denotes the double
integral

I (m1r ) =
∫ ∞

−∞

dθ1

2

∫ ∞

−∞

dθ2

2
R(θ1 − θ2)R(θ2 − θ1) e−m1r (cosh θ1+cosh θ2). (3.19)

Based on the previous mass analysis for relevant multiparticle states, the asymp-
totic expansion (3.17) as a whole applies in the region 0 ≤ p < 1/3 (0 ≤ β < 1).

4. ASYMPTOTIC BEHAVIOR OF PAIR CORRELATIONS

4.1. Charge Correlation Function

According to the definition of the charge correlation function hρ in (2.6),
only the first term on the right-hand side (rhs) of Eq. (3.17), proportional to qq ′,
contributes to hρ . Since the modified Bessel function K0(x) has the asymptotic
form

K0(x) ∼
x→∞

(
π

2x

)1/2

e−x , (4.1)

the large-distance behavior of hρ , valid in the whole stability region 0 ≤ β < 2,
reads

hρ(r ) ∼
r→∞ −λ

(
π

2m1r

)1/2

e−m1r . (4.2)

This formula tells us that the mass m1 of the lightest B1 breather is the renormalized
inverse screening length of the charge correlation function.

The mass m1, given by Eq. (2.18), has the small-β expansion of the form

m1 = κ

[
sin (πβ/(4 − β))

πβ/(4 − β)

]1/2

= κ

[
1 − π2

192
β2 − π2

384
β3 + O(β4)

]
(4.3)

and the parameter λ, given by Eq. (3.7), has the small-β expansion of the form

λ = β

[
1 −

(
1

32
+ 7π2

384

)
β2 −

(
1

96
+ 23π2

2304

)
β3 + O(β4)

]
. (4.4)

When β → 0, one has m1 ∼ κ and λ ∼ β, so that the formula (4.2) reproduces
correctly the DH result (A.9). We conclude that the large-distance behavior of
the charge correlation function changes continuously when going from strictly
positive values of β > 0 to the regime β → 0, in agreement with the general
belief.
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4.2. Number Density Correlation Function

According to the definition of the number density correlation function hn in
(2.6), the second and third terms on the rhs of Eq. (3.17), which do not depend on
the signs of the considered charges q and q ′, contribute to hn:

hn(r ) = πλ2 tan (pπ )

2

1

R2[−iπ (1 + p)]
K0(m2r ) + λ2

2!
I (m1r ) + o(e−m3r ).(4.5)

This asymptotic formula holds in the region 0 ≤ p < 1/3 (0 ≤ β < 1).
The exponential decay at large r of the two terms in Eq. (4.5) is given by the

asymptotic of K0(m2r ) ∼ exp(−m2r ) and I (m1r ) ∼ exp(−2m1r ). At strictly pos-
itive β > 0, the inequality m2 = 2m1 cos(pπ/2) < 2m1 takes place and therefore
the large-distance behavior of hn(r ) is dominated by

hn(r ) ∼
r→∞ πλ2 tan(pπ )

2

1

R2[−iπ (1 + p)]

(
π

2m2r

)1/2

e−m2r . (4.6)

As concerns the β → 0 limit of this formula, considering λ → β, p → β/4,
R(−iπ ) → 1 and m2 → 2κ leads to the expression

hn(r ) ∼
r→∞

π2β3

8

(
π

4κr

)1/2

e−2κr . (4.7)

The large-distance form of the density correlation function is derived at
lower orders in β by a systematic diagrammatic expansion in Appendix, see
formula (A.18). It is seen that the leading high-temperature term is of order β2,
but when one is interested in the large-distance asymptotics κr → ∞, the leading
term is of order β3. This term is twice smaller than the obtained result (4.7).
The reason for this inconsistency consists in the fact that in the regime β → 0
the coalescence of the inverse correlation lengths m2 = 2m1 → 2κ takes place in
Eq. (4.5). As a consequence, also the B1 B1 term (λ2/2!)I (m1r ) in (4.5), which
is subleading for strictly positive β > 0, contributes to the large-r asymptotic
behavior of hn(r ) when β → 0. The derivation of this additional contribution and
the subsequent verification of the consistency of the final result with the high-
temperature asymptotic formula (A.18) are the subjects of the next paragraph.

To evaluate the β → 0 (or, equivalently, p → 0) behavior of the integral
I (m1r ) given by (3.19), we first use the formula (3.13), valid for real values of θ ,
to write down

R(θ )R(−θ ) ∼
p→0

sinh2(θ )

sinh2(θ ) + sin2(pπ )
= 1 − sin2(pπ )

cosh2(θ ) − cos2(pπ )
. (4.8)
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The change of variables θt = (θ1 + θ2)/2 and θ = θ1 − θ2 in the integral (3.19)
and the subsequent integration over θt then leads to the representation

I (m1r ) ∼
p→0

K 2
0 (m1r ) −

∫ ∞

−∞

dθ

2

sin2(pπ )

cosh2(θ ) − cos2(pπ )
K0 [2m1r cosh(θ/2)] .

(4.9)

It is easy to show that for any function f (θ ) regular at θ = 0 it holds
∫ ∞

−∞

dθ

2

1

cosh(θ ) − cos(pπ )
f (θ ) ∼

p→0

1

p
f (0). (4.10)

The application of this relation to the integral in Eq. (4.9) leads to

I (m1r ) ∼
p→0

K 2
0 (m1r ) − pπ2

2
K0(2m1r ). (4.11)

Thus,

λ2

2!
I (m1r ) = β2

2
K 2

0 (κr ) − π2β3

16
K0(2κr ) + O(β4). (4.12)

At asymptotically large distance,

λ2

2!
I (m1r ) ∼

r→∞
πβ2

4κr
e−2κr − π2β3

16

(
π

4κr

)1/2

e−2κr + O(β4). (4.13)

Summing up the rhs of this formula with the rhs of the previous formula (4.7),
one recovers correctly the asymptotic result (A.18) obtained by the systematic β

expansion. We conclude that the large-distance behavior of the number density
correlation function undertakes an abrupt change, namely the discontinuity, when
going from strictly positive values of β > 0 to the β → 0 regime.

We have shown by the exact calculation that the large-distance asymptotics
of the density correlation function at fixed temperature β > 0 does not coincide
with that obtained when the high-temperature β-expansion has been performed
first. This is equivalent to saying that the large-distance asymptotics and the
high-temperature limit do not commute for this function. Such phenomenon is in
contradiction with the “usual” physical intuition.

5. CONCLUSION

In the present paper, we took advantage of the exact solvability of the bulk
2D Coulomb gas to study the large-distance behavior of correlation functions
between charged particles. Using the form-factor technique for the equivalent
(1+1)-dimensional sine-Gordon theory, we have expressed in Eqs. (3.17)–(3.19)
the leading and subleading asymptotic terms of particle correlation functions in
terms of the masses of breathers belonging to the sine-Gordon particle spectrum.
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The result for the charge correlation function hρ(r ) (4.2)–(4.4), valid in the
whole stability region of the Coulomb gas 0 < β < 2, has the generally anticipated
property: in the β → 0 regime, it reduces continuously to the DH result (A.9). This
means that heuristic extensions of mean-field theories to finite temperatures (7) are
reasonable when they are based on the charge-charge correlations.

On the other hand, the formula (4.6) for the asymptotic decay of the number
density correlation function hn(r ), valid in the region 0 < β < 4/3, does not
reproduce in the β → 0 regime [see Eq. (4.7)] the result of the high-temperature
expansion (A.18). The reason for this inconsistency consists in the fact that when
β → 0 the term (λ2/2!)I (m1r ) in Eq. (4.5), which is subleading for strictly positive
β > 0, interferes with the leading one and also contributes to the asymptotic result.
Taking into account the asymptotic formula (4.13) for this subleading term, one
recovers correctly the high-temperature formula (A.18). As a consequence of
the above scenario, the large-distance behavior of the number density correlation
function undertakes a discontinuity when going from strictly positive values of
β > 0 to the β → 0 regime. The high-temperature expansion (A.18) therefore
does not reflect adequately the large-distance behavior of the number density
correlation at strictly positive β > 0. This phenomenon contradicts the general
belief and one has to be very careful when extending the DH description of
number density correlations to finite temperatures.

We notice that the derivation of the standard Debye-Hückel theory is based on
electrical quantities and it is perhaps not surprising that the behavior of quantities
related to the number density is not always adequately reproduced in this high-
temperature theory.

The anomaly in the large-distance behavior of the number density correlation
function hn(r ) was observed due to the availability of the exact (and, therefore, non-
perturbative) description of the 2D Coulomb gas. The anomaly could be observed
perturbatively only after the resummation of specific diagrammatic contributions
in all β orders of the large-distance decay of hn(r ). It would be interesting to reveal
the resummation mechanism because the described anomaly might be present in
3D Coulomb fluids, too.

APPENDIX: DIAGRAMMATIC EXPANSION

In this appendix, we derive the asymptotic large-distance form of the charge
and number density correlation functions in the bulk 2D Coulomb gas, at lower
orders in β. The β expansions of the correlation functions must be taken for a
fixed value of the inverse Debye length κ = √

2πβn, which only sets the length
scale.

For the considered Coulomb gas with the charge symmetry, the ordinary
Ornstein-Zernike (OZ) equation splits into two independent relations for the charge
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and density functions (22)

hρ = cρ + cρ ∗ n ∗ hρ, (A.1)

hn = cn + cn ∗ n ∗ hn, (A.2)

where ∗ denotes a convolution product and the charge and density direct correlation
functions are defined in analogy with Eq. (2.6) as follows

cρ = 1

4

∑

q,q ′=±1

qq ′cqq ′ , cn = 1

4

∑

q,q ′=±1

cqq ′ . (A.3)

In the renormalized Mayer expansion of the excess Helmholtz free energy in
density, (22) the chains of simple −βv bonds are summed up into the renormalized
bonds K , defined implicitly by the relation

K = −βv + (−βv) ∗ n ∗ K (A.4)

with v being the Coulomb potential. In the infinite 2D space, one has

K (r ) = −βK0(κr ), (A.5)

where K0 is the modified Bessel function of second kind (3.18).
In the renormalized-bond format, the charge direct correlation function is

expressible as

cρ(r ) = −βv(r ) +
∞∑

j=3

β j c( j)
ρ (r ), (A.6)

where only such renormalized graphs of the excess Helmholtz free energy con-
tribute to the coefficients {c( j)

ρ }∞j=3 which have their two root vertices with an
odd bond-coordination and their field vertices with an even bond-coordination. In
particular, (9)

c(3)
ρ (r ) = −1

6
K 3

0 (κr ), (A.7)

c(4)
ρ (r ) = − 1

8π
K0(κr )

∫
d2(κr ′)K 2

0 (κr ′)K 2
0 (κ|r − r′|), (A.8)

etc. Inserting the leading cρ(r ) = −βv(r ) into the OZ relation (A.1), one gets for
hρ nothing but the definition (A.4) of the renormalized bond K . Therefore, at the
lowest order in β,

hρ(r ) = −βK0(κr ) ∼
r→∞ −β

(
π

2κr

)1/2

exp(−κr ) (A.9)

since K0(x) has the asymptotic form (4.1). It was shown in Ref. 19 that the
consideration of the terms j = 3, 4 in the expansion (A.6) with the corresponding
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coefficients (A.7) and (A.8) implies the large-distance asymptotic behavior (4.2)
with the β expansions of the parameters m1 (4.3) and λ (4.4) up to the indicated
β3 order.

Within the renormalized-bond formalism, the number density direct correla-
tion function is given by

cn(r ) = 1

2!
K 2(r ) +

∞∑

j=4

β j c( j)
n (r ). (A.10)

Here, the leading term of order β2 corresponds to the renormalized Meeron
(watermelon) diagram and renormalized graphs of the excess Helmholtz free
energy, contributing to the coefficients {c( j)

n }∞j=4, are the ones which have their two
root vertices as well as field vertices with an even bond-coordination. Inserting the
leading cn(r ) = 1

2! K 2(r ) of order β2 into the OZ relation (A.2), the convolution
term is easily seen to be of higher order β3. Thus, at lowest order in β, hn(r ) =
cn(r ),

hn(r ) = β2

2
K 2

0 (κr ) ∼
r→∞

πβ2

4κr
exp(−2κr ). (A.11)

Since the sum on the rhs of (A.10) starts from j = 4, the β3 term of hn has its
origin exclusively in the convolution term of the OZ relation (A.2) taken with
cn(r ) = hn(r ) = K 2(r )/2!. Consequently,

hn(r ) = β2

2
K 2

0 (κr ) + β3

4
J (κr ) + O(β4), (A.12)

where the integral J is defined by

J (r ) =
∫

d2r ′

2π
K 2

0 (r′)K 2
0 (r − r′). (A.13)

In terms of the 2D Fourier transform of K 2
0 (r)

G(k) =
∫

d2r

2π
e−ik·r K 2

0 (r) = ln[(k/2) +
√

1 + (k/2)2]

k
√

1 + (k/2)2
, (A.14)

J is expressible as follows

J (r ) =
∫

d2k

2π
eik·rG2(k). (A.15)

Let us put r = (0, r ) in the Cartesian notation. Since the function G2(k) has
simple poles at ky = ±i

√
4 + k2

x , the integration over the vector component ky

can be performed explicitly as the contour integration in the complex plane by



A Trickiness of the High-Temperature Limit 585

using the residuum theorem, with the result

J (r ) = π2

4

∫ ∞

−∞

dkx

2

1√
4 + k2

x

exp(−r
√

4 + k2). (A.16)

The integral in (A.16) is equal to K0(2r ) and so J (r ) = (π2/4)K0(2r ). Equation
(A.12) thus takes the form

hn(r ) = β2

2
K 2

0 (κr ) + π2β3

16
K0(2κr ) + O(β4). (A.17)

At asymptotically large distance,

hn(r ) ∼
r→∞

πβ2

4κr
e−2κr + π2β3

16

( π

4κr

)1/2
e−2κr + O(β4). (A.18)

Here, the leading high-temperature term is of order β2. But when one is interested
in the large-distance κr → ∞ asymptotics of the density correlation function, like
in the present paper, the leading term is of order β3.
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<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


